3 years ago

Trace analysis of estrogenic compounds in surface and groundwater by ultra high performance liquid chromatography-tandem mass spectrometry as pyridine-3-sulfonyl derivatives

Natural estrogens (estrone: E1, 17β-estradiol: E2, estriol: E3) and synthetic 17α-ethynylestradiol (EE2) are reported as strong endocrine disruptors even at extremely low concentrations. Therefore, the watch list from the European Commission regarding emerging aquatic pollutants recommended maximum detection limits of 0.035 ng/L for EE2 and 0.4 ng/L for E1 and E2. In this study, a UHPLC-ESI-MS/MS method allowing quantification of E1, E2, E3 and EE2 in aqueous matrices was developed. The analytes were derivatized using pyridine-3-sulfonyl chloride and a broad range of product ions were generated and their specificity was assessed by analyzing both surface and groundwater. At least two product ions for each estrogenic compound were proved to be specific and hence suitable for quantification and confirmation. In complex aqueous matrices, analyte responses were particularly affected by ion suppression. This phenomenon was reduced by optimizing the clean-up and selecting a suitable stationary phase for the chromatographic separation. The limits of quantification assessed in surface water with the optimized method ranged from 0.098 ng/L (EE2) to 2.73 ng/L (E3).

Publisher URL: www.sciencedirect.com/science

DOI: S002196731731840X

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.