3 years ago

Stabilizing the electrodeposit-electrolyte interphase in soluble lead flow batteries with ethanoate additive

Stabilizing the electrodeposit-electrolyte interphase in soluble lead flow batteries with ethanoate additive
The soluble lead flow battery (SLFB) is a promising energy storage system. In comparison to conventional flow batteries, the membrane-less and single-flow design of SLFBs is potentially much more economical to scale up for utility-scale applications. However, SLFB lifespan reported so far is less than 200 cycles under normal flow conditions. This study reports a method for significantly extending the cycle life and expanding capacity of SLFBs. By adding an adequate amount of sodium ethanoate to the electrolyte, lead dioxide (PbO2) deposition stability is materially improved and shed PbO2 particles are substantially reduced. Lifespan of ethanoate-added SLFBs is shown to extend by over 50%, and under optimal condition exceeds 500 cycles at over 65% energy efficiency. This improvement in SLFB performance is primarily attributed to the stabilization of both the electroplated PbO2 layers and proton activity at the electrodeposit-electrolyte interphase. We demonstrate a novel and economical approach for advancing performance of membrane-less flow batteries that involve redox reactions associated with acidity variation and operate through electrodeposition.

Publisher URL: www.sciencedirect.com/science

DOI: S0013468618300276

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.