3 years ago

Structure, function and evolution of the hemerythrin-like domain superfamily

Antonio Lazcano, Vikram Alva, Claudia Alvarez-Carreño, Arturo Becerra
Hemerythrin-like proteins have generally been studied for their ability to reversibly bind oxygen through their binuclear non-heme iron centers. However, in recent years, it has become increasingly evident that some members of the hemerythrin-like superfamily also participate in many other biological processes. For instance, the binuclear non-heme iron site of YtfE, a hemerythrin-like protein involved in the repair of iron centers in Escherichia coli, catalyzes the reduction of nitric oxide to nitrous oxide, and the human F-box/LRR-repeat protein 5, which contains a hemerythrin-like domain, is involved in intracellular iron homeostasis. Furthermore, structural data on hemerythrin-like domains from two proteins of unknown function, PF0695 from Pyrococcus furiosus and NMB1532 from Neisseria meningitidis, show that the cation-binding sites, typical of hemerythrin, can be absent or be occupied by metal ions other than iron. To systematically investigate this functional and structural diversity of the hemerythrin-like superfamily, we have collected hemerythrin-like sequences from a database comprising fully sequenced proteomes and generated a cluster map based on their all-against-all pairwise sequence similarity. Our results show that the hemerythrin-like superfamily comprises a large number of protein families which can be classified into three broad groups on the basis of their cation-coordinating residues: (a) signal-transduction and oxygen-carrier hemerythrins (H-HxxxE-HxxxH-HxxxxD); (b) hemerythrin-like (H-HxxxE-H-HxxxE); and, (c) metazoan F-box proteins (H-HExxE-H-HxxxE). Interestingly, all but two hemerythrin-like families exhibit internal sequence and structural symmetry, suggesting that a duplication event may have led to the origin of the hemerythrin domain. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/pro.3374

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.