3 years ago

Direct Microrolling Processing on a Silicon Wafer

Direct Microrolling Processing on a Silicon Wafer
Norihiko Sekine, Yuya Tanahashi, Kanna Aoki, Minoru Fujii, Tadafumi Adschiri, Masaki Denokami, Keita Ishiguro, Kentaro Furusawa
Although, varieties of micro- to nanoscale fabrication technologies have been invented and refined for silicon (Si) processing because Si is the basic material of integrated circuits, the layouts are based on layer-by-layer approaches, making it difficult to realize three-dimensional (3D) structures with complicated shapes normal to the planar surface (along the out-of-plane direction) of the wafers used. Here, a novel and direct Si-processing technology that enables to bend thin layers of Si surfaces into various 3D curved structures at the micrometer scale is introduced. This bending is achieved by porosifying a Si wafer surface using anodic oxidation and then performing conventional photolithography patterning and wet etching. The porosity gradient in the depth direction gives rise to a stress-internalized layer in which self-rolling action is induced via subsequent patterning and wet etching. A subsequent oxidation process further enhances the curvature deformation, leading to the formation of tubes, for example. The rolling directions can be controlled by 2D patterning of the porous Si layer, which is explained well from a structural dynamics perspective. This technology has a wide range of capabilities for realizing 3D structures on Si substrates, enabling new design possibilities for Si-based on-chip devices. A direct silicon-processing technology that enables thin layers of silicon surfaces to be bent into various 3D curved structures at the micrometer scale is demonstrated. This bending is achieved by porosifying a silicon wafer surface using anodic oxidation and then performing conventional photolithography patterning and wet etching.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/smll.201701630

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.