3 years ago

Hepatocellular carcinoma-related cyclin D1 is selectively regulated by autophagy degradation system.

Yen-Chi Chiu, Shang-Rung Wu, Huey-Jen Su, Chung-Yi Li, Hsiao-Sheng Liu, Shan-Ying Wu, Chia-Jui Yen, Ih-Jen Su, Xi-Zhang Lin, Fu-Wen Liang, Sheng-Hui Lan, Chun-Li Su, Tsung-Hsueh Lu, Ting-Fen Tsai
Dysfunction of degradation machineries causes cancers, including hepatocellular carcinoma (HCC). Overexpression of cyclin D1 in HCC has been reported. We previously reported that autophagy preferentially recruits and degrades the oncogenic miR-224 to prevent HCC. Therefore, in the present study we attempted to clarify whether cyclin D1 is another oncogenic factor selectively regulated by autophagy in HCC tumorigenesis. Initially, we found an inverse correlation between low autophagic activity and high cyclin D1 expression in the tumors of 147 HCC patients and three murine models, and these results taken together revealed a correlation with poor overall survival of HCC patients, indicating the importance of these two events in HCC development. We found that increased autophagic activity leads to cyclin D1 ubiquitination and selective recruitment to the autophagosome mediated by a specific receptor SQSTM1, followed by fusion with lysosome and degradation. Autophagy-selective degradation of ubiquitinated cyclin D1 through SQSTM1 was confirmed using cyclin D1-ubiquitin binding site (K33-238 R) and phosphorylation site (T286A) mutants, lentivirus-mediated silencing ATG5, ATG7, and Sqstm1 knockout cells. Functional studies revealed that autophagy-selective degradation of cyclin D1 plays suppressive roles in cell proliferation, colony, and liver tumor formation. Notably, an increase of autophagic activity by the pharmacological inducers (amiodarone and rapamycin) significantly suppressed tumor growth in both the orthotopic liver tumor and subcutaneous tumor xenograft models. Our findings provide evidence of the underlying mechanism involved in the regulation of cyclin D1 by selective autophagy to prevent tumor formation. Taken together, our data demonstrate that autophagic degradation machinery and the cell cycle regulator cyclin D1 are linked with HCC tumorigenesis. We believe these findings may be of value in the development of alternative therapeutics for HCC patients. This article is protected by copyright. All rights reserved.

Publisher URL: http://doi.org/10.1002/hep.29781

DOI: 10.1002/hep.29781

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.