3 years ago

Deep molecular phenotypes link complex disorders and physiological insult to CpG methylation.

Werner Roemisch-Margl, Eman K Al-Dous, Christian Gieger, Gordan Lauc, Maija Pezer, Melanie Waldenberger, Pei-Chien Tsai, Yasmin A Mohamoud, Sara Kader, Jordana Bell, Nele Friedrich, Mario Falchi, Anna Halama, Alessia Visconti, Jerzy Adamski, Rudolf Engelke, Nisha Stephan, Johannes Graumann, Tim Spector, Gabi Kastenmüller, Dennis O Mook-Kanamori, Annette Peters, Annika Wahl, Joel A Malek, Karsten Suhre, Hina Sarwath, Shaza B Zaghlool
Epigenetic regulation of cellular function provides a mechanism for rapid organismal adaptation to changes in health, lifestyle, and environment. Associations of cytosine-guanine di-nucleotide (CpG) methylation with clinical endpoints that overlap with metabolic phenotypes suggest a regulatory role for these CpG sites in the body's response to disease or environmental stress. We previously identified 20 CpG sites in an epigenome-wide association study (EWAS) with metabolomics that were also associated in recent EWASs with diabetes-, obesity-, and smoking-related endpoints. To elucidate the molecular pathways that connect these potentially regulatory CpG sites to the associated disease or lifestyle factors, we conducted a multi-omics association study including 2,474 mass-spectrometry based metabolites in plasma, urine, and saliva, 225 NMR based lipid and metabolite measures in blood, 1,124 blood-circulating proteins using aptamer technology, 113 plasma protein N-glycans and 60 IgG-glyans, using 359 samples from the multi-ethnic Qatar Metabolomics Study on Diabetes (QMDiab). We report 138 multi-omics associations at these CpG sites, including diabetes biomarkers at the diabetes-associated TXNIP locus, and smoking-specific metabolites and proteins at multiple smoking-associated loci, including AHRR. Mendelian randomization suggests a causal effect of metabolite levels on methylation of obesity associated CpG sites, i.e. of glycerophospholipid PC(O-36:5), glycine, and a very low density lipoprotein (VLDL-A) on the methylation of the obesity-associated CpG loci DHCR24, MYO5C, and CPT1A, respectively. Taken together, our study suggests that multi-omics-associated CpG methylation can provide functional read-outs for the underlying regulatory response mechanisms to disease or environmental insults.

Publisher URL: http://doi.org/10.1093/hmg/ddy006

DOI: 10.1093/hmg/ddy006

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.