3 years ago

Weak Epistasis May Drive Adaptation in Recombining Bacteria.

William P Hanage, Yonatan H Grad, Michael U Gutmann, Brian J Arnold, Jukka Corander, Marc Lipsitch, Samuel K Sheppard
The impact of epistasis on the evolution of multilocus traits depends on recombination. While sexually-reproducing eukaryotes recombine so frequently that epistasis between polymorphisms is not considered to play a large role in short-term adaptation, many bacteria also recombine, some to the degree that their populations are described as 'panmictic' or 'freely recombining'. However, whether this recombination is sufficient to limit the ability of selection to act on epistatic contributions to fitness is unknown. We quantify homologous recombination in five bacterial pathogens and use these parameter estimates in a multilocus model of bacterial evolution with additive and epistatic effects. We find that even for highly recombining species (e.g. Streptococcus pneumoniae or Helicobacter pylori), selection on weak interactions between distant mutations is nearly as efficient as for an asexual species, likely because homologous recombination typically transfers only short segments. However, for strong epistasis, bacterial recombination accelerates selection, with the dynamics dependent on the amount of recombination and the number of loci. Epistasis may thus play an important role in both the short- and long-term adaptive evolution of bacteria and, unlike in eukaryotes, is not limited to strong effect sizes, closely linked loci, or other conditions that limit the impact of recombination.

Publisher URL: http://doi.org/10.1534/genetics.117.300662

DOI: 10.1534/genetics.117.300662

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.