3 years ago

How to augment a small learning set for improving the performances of a CNN-based steganalyzer?.

Frédéric Comby, Marc Chaumont, Mehdi Yedroudj

Deep learning and convolutional neural networks (CNN) have been intensively used in many image processing topics during last years. As far as steganalysis is concerned, the use of CNN allows reaching the state-of-the-art results. The performances of such networks often rely on the size of their learning database. An obvious preliminary assumption could be considering that "the bigger a database is, the better the results are". However, it appears that cautions have to be taken when increasing the database size if one desire to improve the classification accuracy i.e. enhance the steganalysis efficiency. To our knowledge, no study has been performed on the enrichment impact of a learning database on the steganalysis performance. What kind of images can be added to the initial learning set? What are the sensitive criteria: the camera models used for acquiring the images, the treatments applied to the images, the cameras proportions in the database, etc? This article continues the work carried out in a previous paper, and explores the ways to improve the performances of CNN. It aims at studying the effects of "base augmentation" on the performance of steganalysis using a CNN. We present the results of this study using various experimental protocols and various databases to define the good practices in base augmentation for steganalysis.

Publisher URL: http://arxiv.org/abs/1801.04076

DOI: arXiv:1801.04076v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.