3 years ago

Efficient Probabilistic Model Checking of Smart Building Maintenance using Fault Maintenance Trees.

Marielle Stoelinga, Alessandro Abate, Nathalie Cauchi, Khaza Anuarul Hoque

Cyber-physical systems, like Smart Buildings and power plants, have to meet high standards, both in terms of reliability and availability. Such metrics are typically evaluated using Fault trees (FTs) and do not consider maintenance strategies which can significantly improve lifespan and reliability. Fault Maintenance trees (FMTs) -- an extension of FTs that also incorporate maintenance and degradation models, are a novel technique that serve as a good planning platform for balancing total costs and dependability of a system. In this work, we apply the FMT formalism to a Smart Building application. We propose a framework for modelling FMTs using probabilistic model checking and present an algorithm for performing abstraction of the FMT in order to reduce the size of its equivalent Continuous Time Markov Chain. This allows us to apply the probabilistic model checking more efficiently. We demonstrate the applicability of our proposed approach by evaluating various dependability metrics and maintenance strategies of a Heating, Ventilation and Air-Conditioning system's FMT.

Publisher URL: http://arxiv.org/abs/1801.04263

DOI: arXiv:1801.04263v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.