5 years ago

Metal Oxide Nanostructures Generated from In Situ Sacrifice of Zinc in Bimetallic Textures as Flexible Ni/Fe Fast Battery Electrodes

Metal Oxide Nanostructures Generated from In Situ Sacrifice of Zinc in Bimetallic Textures as Flexible Ni/Fe Fast Battery Electrodes
Bangqing Xiao, Zitong Zhang, Yong Jin, Tianyi Huang, Zhifang Liu
An “in situ sacrifice” process was devised in this work as a room-temperature, all-solution processed electrochemical method to synthesize nanostructured NiOx and FeOx directly on current collectors. After electrodepositing NiZn/FeZn bimetallic textures on a copper net, the zinc component is etched and the remnant nickel/iron are evolved into NiOx and FeOx by the “in situ sacrifice” activation we propose. As-prepared electrodes exhibit high areal capacities of 0.47 mA h cm−2 and 0.32 mA h cm−2, respectively. By integrating NiOx as the cathode, FeOx as the anode, and poly(vinyl alcohol) (PVA)-KOH gel as the separator/solid-state electrolyte, the assembled quasi-solid-state flexible battery delivers a volumetric capacity of 6.91 mA h cm−3 at 5 mA cm−2, along with a maximum energy density of 7.40 mWh cm−3 under a power density of 0.27 W cm−3 and a maximum tested power density of 3.13 W cm−3 with a 2.17 mW h cm−3 energy density retention. Our room-temperature synthesis, which only consumes minute electricity, makes it a promising approach for large-scale production. We also emphasize the in situ sacrifice zinc etching process used in this work as a general strategy for metal-based nanostructure growth for high-performance battery materials. NiZn/FeZn bimetallic textures were prepared by electrodeposition, followed by an “in situ sacrifice” activation process, for high-performance flexible electrodes in quasi-solid-state cells.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/asia.201700518

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.