3 years ago

Metastability of hard-core dynamics on bipartite graphs.

Siamak Taati, Frank den Hollander, Francesca R. Nardi

We study the metastable behaviour of a stochastic system of particles with hard-core interactions in a high-density regime. Particles sit on the vertices of a bipartite graph. New particles appear subject to a neighbourhood exclusion constraint, while existing particles disappear, all according to independent Poisson clocks. We consider the regime in which the appearance rates are much larger than the disappearance rates, and there is a slight imbalance between the appearance rates on the two parts of the graph. Starting from the configuration in which the weak part is covered with particles, the system takes a long time before it reaches the configuration in which the strong part is covered with particles. We obtain a sharp asymptotic estimate for the expected transition time, show that the transition time is asymptotically exponentially distributed, and identify the size and shape of the critical droplet representing the bottleneck for the crossover. For various types of bipartite graphs the computations are made explicit. Proofs rely on potential theory for reversible Markov chains, and on isoperimetric results. In a follow-up paper we will use our results to study the performance of random-access wireless networks.

Publisher URL: http://arxiv.org/abs/1710.10232

DOI: arXiv:1710.10232v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.