3 years ago

Low frequency analogue Hawking radiation: The Bogoliubov-de Gennes model.

Silke Weinfurtner, Antonin Coutant

We analytically study the low-frequency properties of the analogue Hawking effect in Bose-Einstein condensates. We show that in one-dimensional flows displaying an analogue horizon, the Hawking effect is dominant in the low-frequency regime. This happens despite non vanishing greybody factors, that is, the coupling of the Hawking mode and its partner to the mode propagating with the flow. To show this, we obtained analytical expressions for the scattering coefficients, in general flows and taking into account the full Bogoliubov dispersion relation. We discuss the obtained expressions for the greybody factors. In particular, we show that they can be significantly decreased if the flow obeys a conformal coupling condition. We argue that in the presence of a small but non-zero temperature, reducing greybody factors greatly facilitates the observation of entanglement, that is, establishing that the state of the Hawking mode and its partner is non-separable.

Publisher URL: http://arxiv.org/abs/1707.09664

DOI: arXiv:1707.09664v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.