3 years ago

Towards the LISA Backlink: Experiment design for comparing optical phase reference distribution systems.

Germán Fernández Barranco, Sonja Veith, Max Zwetz, Lea Bischof, Karsten Danzmann, Stefan Ast, Jan-Simon Hennig, Jens Reiche, Thomas S Schwarze, Daniel Penkert, Oliver Gerberding, Michael Tröbs, Katharina-Sophie Isleif, Gerhard Heinzel

LISA is a proposed space-based laser interferometer detecting gravitational waves by measuring distances between free-floating test masses housed in three satellites in a triangular constellation with laser links in-between. Each satellite contains two optical benches that are articulated by moving optical subassemblies for compensating the breathing angle in the constellation. The phase reference distribution system, also known as backlink, forms an optical bi-directional path between the intra-satellite benches.

In this work we discuss phase reference implementations with a target non-reciprocity of at most $2\pi\,\mathrm{\mu rad/\sqrt{Hz}}$, equivalent to $1\,\mathrm{pm/\sqrt{Hz}}$ for a wavelength of $1064\,\mathrm{nm}$ in the frequency band from $0.1\,\mathrm{mHz}$ to $1\,\mathrm{Hz}$. One phase reference uses a steered free beam connection, the other one a fiber together with additional laser frequencies. The noise characteristics of these implementations will be compared in a single interferometric set-up with a previously successfully tested direct fiber connection. We show the design of this interferometer created by optical simulations including ghost beam analysis, component alignment and noise estimation. First experimental results of a free beam laser link between two optical set-ups that are co-rotating by $\pm 1^\circ$ are presented. This experiment demonstrates sufficient thermal stability during rotation of less than $10^{-4}\,\mathrm{K/\sqrt{Hz}}$ at $1\,\mathrm{mHz}$ and operation of the free beam steering mirror control over more than 1 week.

Publisher URL: http://arxiv.org/abs/1709.06515

DOI: arXiv:1709.06515v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.