3 years ago

Stable Weyl points, trivial surface states and particle-hole compensation in WP2.

C. Felser, J. D. Denlinger, R. P. Day, F. Boschini, E. Razzoli, V. Süß, I. S. Elfimov, M. Michiardi, B. Zwartsenberg, A. Damascelli

A possible connection between extremely large magneto-resistance and the presence of Weyl points has garnered much attention in the study of topological semimetals. Exploration of these concepts in transition metal phosphide WP2 has been complicated by conflicting experimental reports. Here we combine angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to disentangle surface and bulk contributions to the ARPES intensity, the superposition of which has plagued the determination of the electronic structure in WP2. Our results show that while the hole- and electron-like Fermi surface sheets originating from surface states have different areas, the bulk-band structure of WP2 is electron-hole-compensated in agreement with DFT. Furthermore, the detailed band structure is compatible with the presence of at least 4 temperature-independent Weyl points, confirming the topological nature of WP2 and its stability against lattice distortions.

Publisher URL: http://arxiv.org/abs/1801.03956

DOI: arXiv:1801.03956v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.