3 years ago

Isotropic three-dimensional T2 mapping of knee cartilage: Development and validation

Roberto Colotti, Gabriele Bonanno, Ruud B. van Heeswijk, Patrick Omoumi, Jean-Baptiste Ledoux
Purpose 1) To implement a higher-resolution isotropic 3D T2 mapping technique that uses sequential T2-prepared segmented gradient-recalled echo (Iso3DGRE) images for knee cartilage evaluation, and 2) to validate it both in vitro and in vivo in healthy volunteers and patients with knee osteoarthritis. Materials and Methods The Iso3DGRE sequence with an isotropic 0.6 mm spatial resolution was developed on a clinical 3T MR scanner. Numerical simulations were performed to optimize the pulse sequence parameters. A phantom study was performed to validate the T2 estimation accuracy. The repeatability of the sequence was assessed in healthy volunteers (n = 7). T2 values were compared with those from a clinical standard 2D multislice multiecho (MSME) T2 mapping sequence in knees of healthy volunteers (n = 13) and in patients with knee osteoarthritis (OA, n = 5). Results The numerical simulations resulted in 100 excitations per segment and an optimal radiofrequency (RF) excitation angle of 15°. The phantom study demonstrated a good correlation of the technique with the reference standard (slope 0.9 ± 0.05, intercept 0.2 ± 1.7 msec, R2 ≥ 0.99). Repeated measurements of cartilage T2 values in healthy volunteers showed a coefficient of variation of 5.6%. Both Iso3DGRE and MSME techniques found significantly higher cartilage T2 values (P < 0.03) in OA patients. Iso3DGRE precision was equal to that of the MSME T2 mapping in healthy volunteers, and significantly higher in OA (P = 0.01). Conclusion This study successfully demonstrated that high-resolution isotropic 3D T2 mapping for knee cartilage characterization is feasible, accurate, repeatable, and precise. The technique allows for multiplanar reformatting and thus T2 quantification in any plane of interest. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:362–371.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jmri.25755

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.