3 years ago

Gelatin Methacryloyl Hydrogels in the Absence of a Crosslinker as 3D Glioblastoma Multiforme (GBM)-Mimetic Microenvironment

Gelatin Methacryloyl Hydrogels in the Absence of a Crosslinker as 3D Glioblastoma Multiforme (GBM)-Mimetic Microenvironment
Fidan Seker, Seda Kizilel, Pelin Erkoc, Tugba Bagci-Onder
3D platforms are important for monitoring tumor progression and screening drug candidates to eradicate tumors such as glioblastoma multiforme (GBM), a malignant type of human brain tumor. Here, a new strategy is reported that exploits visible-light-induced crosslinking of gelatin where the reaction is carried out in the absence of an additional crosslinker. Visible light-induced crosslinking promotes the design of cancer microenvironment-mimetic system without compromising the cell viability during the process and absence of crosslinker facilitates the synthesis of the unique construct. Suspension and spheroid-based models of GBM are used to investigate cellular behavior, expression profiles of malignancy, and apoptosis-related genes within this unique network. Furthermore, sensitivity to an anticancer drug, Digitoxigenin, treatment is investigated in detail. The data suggest that U373 cells, in sparse or spheroid form, have significantly decreased expressions of apoptosis-activating genes, Bad, Puma, and Caspase-3, and a high expression of prosurvival Bcl-2 gene within GelMA hydrogels. Matrix-metalloproteinase genes are also upregulated within GelMA, suggesting positive contribution of gels on extracellular remodeling of cancer cells. This unique photocurable gelatin holds great potential for clinical translation of cancer research through the analysis of 3D malignant cancer cell behavior, and hence for more efficient treatment methods for GBM. Visible-light-induced crosslinking of gelatin is reported in the absence of an additional crosslinker. Visible-light-induced crosslinking promotes cancer microenvironment mimetic system without compromising cell viability. Suspension and spheroid-based models of GBM are used to investigate cellular behavior, expression profiles of malignancy and apoptosis-related genes, and sensitivity to an anticancer drug, Digitoxigenin, in detail.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/mabi.201700369

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.