3 years ago

Short single-stranded DNA degradation products augment the activation of Toll-like receptor 9

Short single-stranded DNA degradation products augment the activation of Toll-like receptor 9
Duško Lainšček, Jelka Pohar, Miša-Mojca Cajnko, Roman Jerala, Karolina Ivičak-Kocjan, Mojca Benčina
Toll-like receptors encounter a diversity of degradation products in endosomes. TLR7 and TLR8 have been shown to be activated by RNA degradation products. Here we show that although TLR9 requires single-stranded DNA longer than 20 nucleotides for a robust response, TLR9 activation is augmented by CpG-containing oligodeoxyribonucleotides (sODNs) as short as 2 nucleotides, which, by themselves, do not induce activation in cell cultures, as well as in mice. sODNs also activate human TLR9 in combination with ODNs containing a single CpG motif that by themselves do not activate human TLR9. The specific sequence motif of sODN and colocalization of ODN and sODN suggest that the mechanism of activation involves binding of both ODN and sODN to TLR9. sODNs augment TLR9 activation by mammalian genomic DNA indicating the role of short DNA degradation products in the endosomes in response to infection or in autoimmune disease, particularly at limiting concentrations of ODNs.

Publisher URL: http://www.nature.com/articles/ncomms15363

DOI: 10.1038/ncomms15363

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.