3 years ago

The Origin of r-Process Elements in the Milky Way.

Rebecca Surman, Oleg Korobkin, Nicole Vassh, Krzysztof Belczynski, Chris L. Fryer, Ryan Wollaeger, Trevor M. Sprouse, Matthew R. Mumpower, Jonas Lippuner, Martyna Chruślińska, Benoit Côté

Some of the heavy elements, such as gold and europium (Eu), are almost exclusively formed by the rapid neutron capture process (r-process). However, it is still unclear which astrophysical site between core-collapse supernovae and neutron star - neutron star (NS-NS) mergers produced most of the r-process elements in the universe. Galactic chemical evolution (GCE) models can test these scenarios by quantifying the frequency and yields required to reproduce the amount of europium (Eu) observed in galaxies. Although NS-NS mergers have become popular candidates, their required frequency (or rate) needs to be consistent with that obtained from gravitational wave measurements. Here we address the first NS-NS merger detected by LIGO/Virgo (GW170817) and its associated Gamma-ray burst and analyze their implication on the origin of r-process elements. The range of NS-NS merger rate densities of 320-4740 Gpc$^{-3}$ yr$^{-1}$ provided by LIGO/Virgo is remarkably consistent with the range required by GCE to explain the Eu abundances in the Milky Way with NS-NS mergers, assuming the solar r-process abundance pattern for the ejecta. Under the same assumption, this event has produced about 1-5 Earth masses of Eu, and 3-13 Earth masses of gold. When using theoretical calculations to derive Eu yields, constraining the role of NS-NS mergers becomes more challenging because of nuclear astrophysics uncertainties. This is the first study that directly combines nuclear physics uncertainties with GCE calculations. If GW170817 is a representative event, NS-NS mergers can produce Eu in sufficient amounts and are likely to be the main r-process site.

Publisher URL: http://arxiv.org/abs/1710.05875

DOI: arXiv:1710.05875v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.