3 years ago

Higher Derivative Mimetic Gravity.

Hassan Firouzjahi, Mohammad Ali Gorji, Seyed Ali Hosseini Mansoori

We study cosmological perturbations in mimetic gravity in the presence of classified higher derivative terms which can make the mimetic perturbations stable. We show that the quadratic higher derivative terms which are independent of curvature and the cubic higher derivative terms which come from curvature corrections are sufficient to remove instabilities in mimetic perturbations. The advantage of working with the classified higher derivative terms is that we can control both the background and the perturbation equations allowing us to construct the higher derivative extension of mimetic dark matter and the mimetic nonsingular bouncing scenarios. The latter can be thought as a new higher derivative effective action for the loop quantum cosmology scenario in which the equations of motion coincide with those suggested by loop quantum cosmology. We investigate a possible connection between the mimetic cosmology and the Randall-Sundrum cosmology.

Publisher URL: http://arxiv.org/abs/1709.09988

DOI: arXiv:1709.09988v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.