3 years ago

Spin Hall magnetoresistance in antiferromagnet/heavy-metal heterostructures.

Hans Huebl, Olena Gomonay, Rudolf Gross, Matthias Opel, Johanna Fischer, Stephan Geprägs, Matthias Althammer, Sebastian T.B. Goennenwein, Richard Schlitz, Nynke Vlietstra, Kathrin Ganzhorn

We investigate the spin Hall magnetoresistance in thin film bilayer heterostructures of the heavy metal Pt and the antiferromagnetic insulator NiO. While rotating an external magnetic field in the easy plane of NiO, we record the longitudinal and the transverse resistivity of the Pt layer and observe an amplitude modulation consistent with the spin Hall magnetoresistance. In comparison to Pt on collinear ferrimagnets, the modulation is phase shifted by 90{\deg} and its amplitude strongly increases with the magnitude of the magnetic field. We explain the observed magnetic field-dependence of the spin Hall magnetoresistance in a comprehensive model taking into account magnetic field induced modifications of the domain structure in antiferromagnets. With this generic model we are further able to estimate the strength of the magnetoelastic coupling in antiferromagnets. Our detailed study shows that the spin Hall magnetoresistance is a versatile tool to investigate the magnetic spin structure as well as magnetoelastic effects, even in antiferromagnetic multidomain materials.

Publisher URL: http://arxiv.org/abs/1709.04158

DOI: arXiv:1709.04158v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.