5 years ago

Efficient Modulation of Spin Waves in Two-Dimensional Octagonal Magnonic Crystal

Efficient Modulation of Spin Waves in Two-Dimensional Octagonal Magnonic Crystal
YoshiChika Otani, Anjan Barman, Saswati Barman, Samiran Choudhury
Efficient tunability of magnonic spectra is demonstrated in two-dimensional ferromagnetic antidot lattices with different lattice constants arranged in the octagonal lattice which can be considered as quasi-periodic magnonic crystals due to the presence of broken translational symmetry. The precessional dynamics of these samples are investigated in the frequency domain with the help of broadband ferromagnetic resonance spectrometer. A rich variation in the spin wave spectra is observed with the variation of lattice constant as well as the strength and orientation of the bias magnetic field. A broad band of spin wave modes are observed for the denser array, which finally converges to two spin wave modes for the sparsest one. In addition to this, the most intense spin wave frequency shows an 8-fold anisotropy with a superposition of weak 4- and 2-fold anisotropy, which arises due to the angular variation of the magnetostatic field distribution at different regions of the octagonal lattice. Micromagnetic simulations qualitatively reproduce the experimentally observed modes, and the simulated mode profiles reveal the presence of different types of extended and quantized standing spin wave modes in these samples. The observations are important for the tunable and anisotropic propagation of spin waves in magnonic crystal based devices.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b02872

DOI: 10.1021/acsnano.7b02872

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.