3 years ago

Stability of the Kasner Universe in f(T) Gravity.

John D. Barrow, Jackson Levi Said, Andronikos Paliathanasis

$f(T)$ gravity offers an alternative context in which to consider gravitational interactions where torsion, rather than curvature, is the mechanism by which gravitation is communicated. We investigate the stability of the Kasner solution with several forms of the arbitrary lagrangian function examined within the $f(T)$ context. This is a Bianchi type--I vacuum solution with anisotropic expansion factors. In the $f(T)$ gravity setting, the solution must conform to a set of conditions in order to continue to be a vacuum solution of the generalized field equations. With this solution in hand, the perturbed field equations are determined for power-law and exponential forms of the $f(T)$ function. We find that the point which describes the Kasner solution is a saddle point which means that the singular solution is unstable. However, we find the de Sitter universe is a late-time attractor. In general relativity, the cosmological constant drives the the isotropization of the spacetime while in this setting the extra $f(T)$ contributions now provide this impetus.

Publisher URL: http://arxiv.org/abs/1709.03432

DOI: arXiv:1709.03432v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.