5 years ago

Spontaneous Cooling Absorption of CO2 by a Polymeric Ionic Liquid for Direct Air Capture

Spontaneous Cooling Absorption of CO2 by a Polymeric Ionic Liquid for Direct Air Capture
Mengxiang Fang, Kun Ge, Klaus S. Lackner, Chenglong Hou, Xiaoyang Shi, Tao Wang, Zhongyang Luo, Jun Liu
A polymeric ionic liquid (PIL), with quaternary ammonium ions attached to the polymer matrix, displays CO2 affinity controlled by moisture. This finding led to the development of moisture swing absorption (MSA) for direct air capture of CO2. This work aims to elucidate the role of water in MSA. For some humidity range, CO2 absorption is an endothermic process associated with concurrent dehydration of the sorbent. The thermodynamic behavior of water indicates a decreased hydrophilicity of the PIL as the mobile anion transforms from CO32– to HCO3 during CO2 absorption. The decrease in hydrophilicity drives water out of the PIL, carrying heat away. The mechanism is elucidated by molecular modeling based on density functional theory. The finding of spontaneous cooling during absorption and its mechanism in the PIL opens new possibilities for designing an air capture sorbent with a strong CO2 affinity but low absorption heat.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01726

DOI: 10.1021/acs.jpclett.7b01726

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.