4 years ago

Thermal Cycling Cascade Biocatalysis of myo-Inositol Synthesis from Sucrose

Thermal Cycling Cascade Biocatalysis of myo-Inositol Synthesis from Sucrose
Chun You, Chao Zhong, Ping Wei, Yi-Heng Percival Zhang
myo-Inositol belongs to the vitamin B group (vitamin B8) and is widely used in the drug, cosmetic, and food and feed industries. It is produced by acid hydrolysis of phytate, but this method suffers from costly feedstock and serious phosphorus pollution. Here a four-enzyme pathway containing thermophilic sucrose phosphorylase, phosphoglucomutase, inositol 1-phosphate synthase, and inositol monophosphatase was designed to convert sucrose to inositol and fructose. To enable the use of enzymes with different optimal temperatures and thermostabilities, we developed a thermal cycling cascade biocatalysis that can selectively add less-thermostable sucrose phosphorylase immobilized on cellulose-containing magnetic nanoparticles into the cold enzyme cocktail or remove it from the hot enzyme cocktail by using a magnetic field (ON/OFF) switch. A series of exergonic reactions push the overall reaction forward, resulting in a high product molar yield (0.98 mol of inositol/mol of sucrose). This cascade biocatalysis platform could open a door to the large-scale production of less-costly inositol and upgrade sucrose to a value-added nutraceutical and functional sweetener.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b01929

DOI: 10.1021/acscatal.7b01929

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.