3 years ago

The dependence of galaxy clustering on tidal environment in the Sloan Digital Sky Survey.

Aseem Paranjape, Oliver Hahn, Ravi K. Sheth

The influence of the Cosmic Web on galaxy formation and evolution is of great observational and theoretical interest. We investigate whether the Cosmic Web leaves an imprint in the spatial clustering of galaxies in the Sloan Digital Sky Survey (SDSS), using the group catalog of Yang et al. and tidal field estimates at $\sim2h^{-1}$Mpc scales from the Mass-Tides-Velocity data set of Wang et al. We use the $\textit{tidal anisotropy}$ $\alpha$ (Paranjape et al.) to characterise the tidal environment of groups, and measure the redshift-space 2-point correlation function (2pcf) of group positions and the luminosity- and colour-dependent clustering of group galaxies using samples segregated by $\alpha$. We find that all the 2pcf measurements depend strongly on $\alpha$, with factors of $\sim20$ between the large-scale 2pcf of objects in the most and least isotropic environments. To test whether these strong trends imply `beyond halo mass' effects for galaxy evolution, we compare our results with corresponding 2pcf measurements in mock catalogs constructed using a halo occupation distribution that only uses halo mass as an input. We find that this prescription qualitatively reproduces $\textit{all}$ observed trends, and also quantitatively matches many of the observed results. Although there are some statistically significant differences between our `halo mass only' mocks and the data -- in the most and least isotropic environments -- which deserve further investigation, our results suggest that if the tidal environment induces additional effects on galaxy properties other than those inherited from their host halos, then these must be weak.

Publisher URL: http://arxiv.org/abs/1801.04568

DOI: arXiv:1801.04568v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.