3 years ago

Cooling of hypernuclear compact stars.

Adriana R. Raduta, Armen Sedrakian, Fridolin Weber

We study the thermal evolution of hypernuclear compact stars constructed from covariant density functional theory of hypernuclear matter and parameterizations which produce sequences of stars containing two-solar-mass objects. For the input in the simulations, we solve the Bardeen-Cooper-Schrieffer gap equations in the hyperonic sector and obtain the gaps in the spectra of $\Lambda$, $\Xi^0$ and $\Xi^-$ hyperons. For the models with masses $M/M_{\odot} \ge 1.5$ the neutrino cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the $(\Lambda p)$ plus leptons channel is the dominant direct Urca process, whereas for more massive stars the purely hyperonic channels $(\Sigma^-\Lambda)$ and $(\Xi^-\Lambda)$ are dominant. Hyperonic pairing strongly suppresses the processes on $\Xi^-$s and to a lesser degree on $\Lambda$s. We find that intermediate-mass $1.5 \le M/M_{\odot} \le 1.8$ models have surface temperatures which lie within the range inferred from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most massive models with $M/M_{\odot} \simeq 2$ may cool very fast via the direct Urca process through the $(\Lambda p)$ channel because they develop inner cores where the $S$-wave pairing of $\Lambda$s and proton is absent.

Publisher URL: http://arxiv.org/abs/1712.00584

DOI: arXiv:1712.00584v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.