3 years ago

The quantum centripetal force on a free particle confined to the surface of a sphere and a cylinder.


The momentum operator for a spin-less particle when confined to a 2D surface embedded into 3D space acquires a geometrical component proportional to the mean curvature that renders it Hermitian. As a consequence, the quantum force operator for a particle confined to spherical and cylindrical surfaces, and free otherwise, derived by applying the Heisenberg equation of motion is found to have an apparently no-radial component in addition to the standard classical radial centripetal force. This component which renders the force operator Hermitian is shown to be essential for the vanishing of the torque the force exerts on the particle and so for the conservation of orbital angular momentum and energy. It is demonstrated that the total force is in fact radial as should be the case for a torque-less one and so can be identified as the quantum centripetal force.

Publisher URL: http://arxiv.org/abs/1801.04610

DOI: arXiv:1801.04610v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.