3 years ago

Asymptotic correlation functions and FFLO signature for the one-dimensional attractive Hubbard model.

Xi-Wen Guan, Song Cheng, Yu-Zhu Jiang, Murray T. Batchelor, Yi-Cong Yu

We study the long-distance asymptotic behavior of various correlation functions for the one-dimensional (1D) attractive Hubbard model in a partially polarized phase through the Bethe ansatz and conformal field theory approaches. We particularly find the oscillating behavior of these correlation functions with spatial power-law decay, of which the pair (spin) correlation function oscillates with a frequency $\Delta k_F$ ($2\Delta k_F$). Here $\Delta k_F=\pi(n_\uparrow-n_\downarrow)$ is the mismatch in the Fermi surfaces of spin-up and spin-down particles. Consequently, the pair correlation function in momentum space has peaks at the mismatch $k=\Delta k_F$, which has been observed in recent numerical work on this model. These singular peaks in momentum space together with the spatial oscillation suggest an analog of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in the 1D Hubbard model. The parameter $\beta$ representing the lattice effect becomes prominent in critical exponents which determine the power-law decay of all correlation functions. We point out that the backscattering of unpaired fermions and bound pairs within their own Fermi points gives a microscopic origin of the FFLO pairing in 1D.

Publisher URL: http://arxiv.org/abs/1710.08742

DOI: arXiv:1710.08742v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.