4 years ago

Identify the Removable Substructure in Carbon Activation

Identify the Removable Substructure in Carbon Activation
Jing Xu, Ziqi Tian, Clement Bommier, Yitong Qi, Xiulei Ji, Wei Tong, De-en Jiang, Yifei Yuan, Zhenyu Xing, Jun Lu
Activated carbon plays a pivotal role in achieving critical functions, such as separation, catalysis, and energy storage. A remaining question of carbon activation is which substructures in amorphous carbon are preferentially removed during activation. Herein, we report the first structure–activation correlation elucidated on the basis of unprecedented comprehensive characterization on carbon activation. We discover that activation under CO2 preferentially removes graphenic layers that are more defective. Therefore, the resulting activated carbon contains thinned turbostratic nanodomains that are of a higher local graphenic order. The mechanistic insights explain why more defective soft carbon is “burned” under CO2 at a much faster rate than hard carbon. The mechanism leads to an activation-based design principle of mesoporous carbon. Guided by this principle, a bimodal micromesoporous carbon is prepared simply by CO2 activation. Our findings may cause a paradigm shift for the rational design of nanoporous carbon.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01937

DOI: 10.1021/acs.chemmater.7b01937

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.