3 years ago

DCDistance: A Supervised Text Document Feature extraction based on class labels.

Charles Henrique Porto Ferreira, Fabricio Olivetti de França, Debora Maria Rossi de Medeiros

Text Mining is a field that aims at extracting information from textual data. One of the challenges of such field of study comes from the pre-processing stage in which a vector (and structured) representation should be extracted from unstructured data. The common extraction creates large and sparse vectors representing the importance of each term to a document. As such, this usually leads to the curse-of-dimensionality that plagues most machine learning algorithms. To cope with this issue, in this paper we propose a new supervised feature extraction and reduction algorithm, named DCDistance, that creates features based on the distance between a document to a representative of each class label. As such, the proposed technique can reduce the features set in more than 99% of the original set. Additionally, this algorithm was also capable of improving the classification accuracy over a set of benchmark datasets when compared to traditional and state-of-the-art features selection algorithms.

Publisher URL: http://arxiv.org/abs/1801.04554

DOI: arXiv:1801.04554v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.