5 years ago

Understanding the Relationship Between Kinetics and Thermodynamics in CO2 Hydrogenation Catalysis

Understanding the Relationship Between Kinetics and Thermodynamics in CO2 Hydrogenation Catalysis
Eric S. Wiedner, Monte L. Helm, Matthew S. Jeletic, John C. Linehan, Aaron M. Appel, Elliott B. Hulley, Michael T. Mock
Catalysts that are able to reduce carbon dioxide under mild conditions are highly sought after for storage of renewable energy in the form of a chemical fuel. This study describes a systematic kinetic and thermodynamic study of a series of cobalt and rhodium bis(diphosphine) complexes that are capable of hydrogenating carbon dioxide to formate under ambient temperature and pressure. Catalytic CO2 hydrogenation was studied under 1.8 and 20 atm of pressure (1:1 CO2/H2) at room temperature in tetrahydrofuran with turnover frequencies (TOF) ranging from 20 to 74 000 h–1. The catalysis was followed by 1H and 31P NMR spectroscopy in real time under all conditions to yield information about the rate-determining step. The cobalt catalysts displayed a rate-determining step of hydride transfer to CO2, while the hydrogen addition and/or deprotonation steps were rate limiting for the rhodium catalysts. Thermodynamic analysis of the complexes provided information on the driving force for each step of catalysis in terms of the catalyst hydricity (ΔG°H), acidity (pKa), and free energy for H2 addition (ΔG°H2). Linear free-energy relationships were identified that link the kinetic activity for catalytic hydrogenation of CO2 to formate with the thermodynamic driving force for the rate-limiting steps of catalysis. The catalyst exhibiting the highest activity, Co(dmpe)2H, was found to have hydride transfer and hydrogen addition steps that were each downhill by approximately 6 to 7 kcal mol–1, and the deprotonation step was thermoneutral. This indicates the fastest catalysts are the ones that most efficiently balance the free energy relationships of every step in the catalytic cycle.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b01673

DOI: 10.1021/acscatal.7b01673

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.