3 years ago

Nanomanipulation of Individual DNA Molecules Covered by Single-Layered Reduced Graphene Oxide Sheets on a Solid Substrate

Nanomanipulation of Individual DNA Molecules Covered by Single-Layered Reduced Graphene Oxide Sheets on a Solid Substrate
Jun Hu, Jinjin Zhang, Shuo Wang, Ying Wang, Bin Li, Yi Zhang, Yue Shen
Nanomanipulation of single DNA molecules has great potential in fundamental genetic research and clinical analysis, and is a good model system for studying the interfacial effects on physiochemical processes, which occur when manipulating the linear DNA molecules with an atomic force microscope (AFM) tip. Here, we demonstrate that AFM nanomanipulation can be carried out on DNA molecules covered by a single-layered reduced graphene oxide sheet. Nanomanipulation, which includes cutting, pushing, and sweeping operations, specific to the covered DNA molecules can be achieved in a well-controlled manner using AFM in the PeakForce Quantitative Nano-Mechanics mode. It was found that the normal force required to cut covered DNA strands is over five times greater than that required for naked strands. This technique provides a distinctive method for the construction of graphene architecture by tailoring the underlying artificial DNA nanostructures.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b05175

DOI: 10.1021/acs.jpcb.7b05175

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.