3 years ago

On the Distribution of Random Geometric Graphs.

Mihai-Alin Badiu, Justin P. Coon

Random geometric graphs (RGGs) are commonly used to model networked systems that depend on the underlying spatial embedding. We concern ourselves with the probability distribution of an RGG, which is crucial for studying its random topology, properties (e.g., connectedness), or Shannon entropy as a measure of the graph's topological uncertainty (or information content). Moreover, the distribution is also relevant for determining average network performance or designing protocols. However, a major impediment in deducing the graph distribution is that it requires the joint probability distribution of the $n(n-1)/2$ distances between $n$ nodes randomly distributed in a bounded domain. As no such result exists in the literature, we make progress by obtaining the joint distribution of the distances between three nodes confined in a disk in $\mathbb{R}^2$. This enables the calculation of the probability distribution and entropy of a three-node graph. For arbitrary $n$, we derive a series of upper bounds on the graph entropy; in particular, the bound involving the entropy of a three-node graph is tighter than the existing bound which assumes distances are independent. Finally, we provide numerical results on graph connectedness and the tightness of the derived entropy bounds.

Publisher URL: http://arxiv.org/abs/1801.04757

DOI: arXiv:1801.04757v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.