3 years ago

Viewpoint Invariant Action Recognition using RGB-D Videos.

Naveed Akhtar, Ajmal Mian, Jian Liu

In video-based action recognition, viewpoint variations often pose major challenges because the same actions can appear different from different views. We use the complementary RGB and Depth information from the RGB-D cameras to address this problem. The proposed technique capitalizes on the spatio-temporal information available in the two data streams to the extract action features that are largely insensitive to the viewpoint variations. We use the RGB data to compute dense trajectories that are translated to viewpoint insensitive deep features under a non-linear knowledge transfer model. Similarly, the Depth stream is used to extract CNN-based view invariant features on which Fourier Temporal Pyramid is computed to incorporate the temporal information. The heterogeneous features from the two streams are combined and used as a dictionary to predict the label of the test samples. To that end, we propose a sparse-dense collaborative representation classification scheme that strikes a balance between the discriminative abilities of the dense and the sparse representations of the samples over the extracted heterogeneous dictionary.

Publisher URL: http://arxiv.org/abs/1709.05087

DOI: arXiv:1709.05087v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.