3 years ago

Accelerated Alternating Projections for Robust Principal Component Analysis.

Jian-Feng Cai, HanQin Cai, Ke Wei

We study robust PCA for the fully observed setting, which is about separating a low rank matrix $\boldsymbol{L}$ and a sparse matrix $\boldsymbol{S}$ from their sum $\boldsymbol{D}=\boldsymbol{L}+\boldsymbol{S}$. In this paper, a new algorithm, dubbed accelerated alternating projections, is introduced for robust PCA which significantly improves the computational efficiency of the existing alternating projections proposed in [Netrapalli, Praneeth, et al., 2014] when updating the low rank factor. The acceleration is achieved by first projecting a matrix onto some low dimensional subspace before obtaining a new estimate of the low rank matrix via truncated SVD. Exact recovery guarantee has been established which shows linear convergence of the proposed algorithm. Empirical performance evaluations establish the advantage of our algorithm over other state-of-the-art algorithms for robust PCA.

Publisher URL: http://arxiv.org/abs/1711.05519

DOI: arXiv:1711.05519v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.