3 years ago

Left ventricular biomechanics in professional football players

G. F. Gjerdalen, T. G. Lueder, A. Hodt, K. Steine
Chronic exercise induces adaptive changes of left ventricular (LV) ejection and filling capacities which may be detected by novel speckle-tracking echocardiography (STE) and tissue Doppler imaging (TDI)-based techniques. A total of 103 consecutive male elite Norwegian soccer players and 46 age-matched healthy controls underwent echocardiography at rest. STE was used to assess LV torsional mechanics and LV systolic longitudinal strain (LS). Diastolic function was evaluated by trans-mitral blood flow, mitral annular velocities by TDI, and LV inflow propagation velocity by color M-mode. Despite similar global LS, players displayed lower basal wall and higher apical wall LS values vs controls, resulting in an incremental base-to-apex gradient of LS. Color M-mode and TDI-derived data were similar in both groups. Peak systolic twist rate (TWR) was significantly lower in players (86.4±2.8 vs controls 101.9±5.2 deg/s, P<.01). Diastolic untwisting rate (UTWR) was higher in players (−124.5±4.2 vs −106.9±6.7 deg/s) and peaked earlier during the cardiac cycle (112.7±0.8 vs 117.4±2.4% of systole duration, both P<.05). Untwisting/twisting ratio (−1.48±0.05 vs −1.11±0.08; P<.001) and untwisting performance (=UTR/TW; −9.25±0.34 vs −7.38±0.40 s−1, P<.01) were increased in players. Augmented diastolic wall strain (DWS), a novel measure of LV compliance in players, was associated with improved myocardial mechanical efficiency. The described myocardial biomechanics may underlie augmented exertional cardiac function in athletes and may have a potential role to characterize athlete′s heart by itself or to distinguish it from hypertensive or hypertrophic cardiomyopathy.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/sms.12893

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.