3 years ago

Conformational dynamics of 1-deoxy-d-xylulose 5-phosphate synthase on ligand binding revealed by H/D exchange MS [Biochemistry]

Conformational dynamics of 1-deoxy-d-xylulose 5-phosphate synthase on ligand binding revealed by H/D exchange MS [Biochemistry]
Frank Jordan, Jieyu Zhou, Natalia S. Nemeria, Luying Yang, Caren Freel Meyers, Alicia DeColli

The enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) is a key enzyme in the methylerythritol 4-phosphate pathway and is a target for the development of antibiotics, herbicides, and antimalarial drugs. DXPS catalyzes the formation of 1-deoxy-d-xylulose 5-phosphate (DXP), a branch point metabolite in isoprenoid biosynthesis, and is also used in the biosynthesis of thiamin (vitamin B1) and pyridoxal (vitamin B6). Previously, we found that DXPS is unique among the superfamily of thiamin diphosphate (ThDP)-dependent enzymes in stabilizing the predecarboxylation intermediate, C2-alpha-lactyl-thiamin diphosphate (LThDP), which has subsequent decarboxylation that is triggered by d-glyceraldehyde 3-phosphate (GAP). Herein, we applied hydrogen–deuterium (H/D) exchange MS (HDX-MS) of full-length Escherichia coli DXPS to provide a snapshot of the conformational dynamics of this enzyme, leading to the following conclusions. (i) The high sequence coverage of DXPS allowed us to monitor structural changes throughout the entire enzyme, including two segments (spanning residues 183–238 and 292–317) not observed by X-ray crystallography. (ii) Three regions of DXPS (spanning residues 42–58, 183–199, and 278–298) near the active center displayed both EX1 (monomolecular) and EX2 (bimolecuar) H/D exchange (HDX) kinetic behavior in both ligand-free and ligand-bound states. All other peptides behaved according to the common EX2 kinetic mechanism. (iii) The observation of conformational changes on DXPS provides support for the role of conformational dynamics in the DXPS mechanism: The closed conformation of DXPS is critical for stabilization of LThDP, whereas addition of GAP converts DXPS to the open conformation that coincides with decarboxylation of LThDP and DXP release.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.