3 years ago

Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator [Environmental Sciences]

Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator [Environmental Sciences]
Michael D. Rennie, Matthew M. Guzzo, Paul J. Blanchfield

There is a pressing need to understand how ecosystems will respond to climate change. To date, no long-term empirical studies have confirmed that fish populations exhibit adaptive foraging behavior in response to temperature variation and the potential implications this has on fitness. Here, we use an unparalleled 11-y acoustic telemetry, stable isotope, and mark–recapture dataset to test if a population of lake trout (Salvelinus namaycush), a cold-water stenotherm, adjusted its use of habitat and energy sources in response to annual variations in lake temperatures during the open-water season and how these changes translated to the growth and condition of individual fish. We found that climate influenced access to littoral regions in spring (data from telemetry), which in turn influenced energy acquisition (data from isotopes), and growth (mark–recapture data). In more stressful years, those with shorter springs and longer summers, lake trout had reduced access to littoral habitat and assimilated less littoral energy, resulting in reduced growth and condition. Annual variation in prey abundance influenced lake trout foraging tactics (i.e., the balance of the number and duration of forays) but not the overall time spent in littoral regions. Lake trout greatly reduced their use of littoral habitat and occupied deep pelagic waters during the summer. Together, our results provide clear evidence that climate-mediated behavior can influence the dominant energy pathways of top predators, with implications ranging from individual fitness to food web stability.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.