3 years ago

Atom-Centered Potentials with Dispersion-Corrected Minimal-Basis-Set Hartree–Fock: An Efficient and Accurate Computational Approach for Large Molecular Systems

Atom-Centered Potentials with Dispersion-Corrected
Minimal-Basis-Set Hartree–Fock: An Efficient and Accurate Computational
Approach for Large Molecular Systems
Gino A. DiLabio, Alberto Otero-de-la-Roza, Viki Kumar Prasad
We present a computational methodology based on atom-centered potentials (ACPs) for the efficient and accurate structural modeling of large molecular systems. ACPs are atom-centered one-electron potentials that have the same functional form as effective-core potentials. In recent works, we showed that ACPs can be used to produce a correction to the ground-state wave function and electronic energy to alleviate shortcomings in the underlying model chemistry. In this work, we present ACPs for H, C, N, and O atoms that are specifically designed to predict accurate non-covalent binding energies and inter- and intramolecular geometries when combined with dispersion-corrected Hartree–Fock (HF-D3) and a minimal basis-set (scaled MINI or MINIs). For example, the combined HF-D3/MINIs-ACP method demonstrates excellent performance, with mean absolute errors of 0.36 and 0.28 kcal/mol for the S22x5 and S66x8 benchmark sets, respectively, relative to highly correlated complete-basis-set data. The application of ACPs results in a significant decrease in error compared to uncorrected HF-D3/MINIs for all benchmark sets examined. In addition, HF-D3/MINIs-ACP, has a cost only slightly higher than a minimal-basis-set HF calculation and can be used with any electronic structure program for molecular quantum chemistry that uses Gaussian basis sets and effective-core potentials.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b01158

DOI: 10.1021/acs.jctc.7b01158

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.