5 years ago

Thermal Light Emission from Monolayer MoS2

Thermal Light Emission from Monolayer MoS2
Lukas Dobusch, Simone Schuler, Thomas Mueller, Vasili Perebeinos
Layered transition metal dichalcogenide semiconductors, such as MoS2 and WSe2, exhibit a range of fascinating properties and are being currently explored for a variety of electronic and optoelectronic devices. These properties include a low thermal conductivity and a large Seebeck coefficient, which make them promising for thermoelectric applications. Moreover, transition metal dichalcogenides undergo an indirect-to-direct bandgap transition when thinned down in thickness, leading to strong excitonic photo- and electroluminescence in monolayers. Here, it is demonstrated that a MoS2 monolayer sheet, freely suspended in vacuum over a distance of 150 nm, emits visible light as a result of Joule heating. Due to the poor transfer of heat to the contact electrodes, as well as the suppressed heat dissipation through the underlying substrate, the electron temperature can reach ≈1500–1600 K. The resulting narrow-band light emission from thermally populated exciton states is spatially located to an only ≈50 nm wide region in the center of the device and goes along with a negative differential electrical conductance of the channel. A MoS2 monolayer sheet, freely suspended in vacuum over a distance of 150 nm, emits visible light as a result of Joule heating. Due to the poor transfer of heat, the electron temperature can reach values as high as 1500–1600 K. The resulting narrow-band light emission from thermally populated exciton states stems from an only 50 nm wide region.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201701304

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.