3 years ago

Two-Stage LASSO ADMM Signal Detection Algorithm For Large Scale MIMO.

Ali Elghariani, Abubakr O. Al-Abbasi, Anis Elgabli, Mark Bell

This paper explores the benefit of using some of the machine learning techniques and Big data optimization tools in approximating maximum likelihood (ML) detection of Large Scale MIMO systems. First, large scale MIMO detection problem is formulated as a LASSO (Least Absolute Shrinkage and Selection Operator) optimization problem. Then, Alternating Direction Method of Multipliers (ADMM) is considered in solving this problem. The choice of ADMM is motivated by its ability of solving convex optimization problems by breaking them into smaller sub-problems, each of which are then easier to handle. Further improvement is obtained using two stages of LASSO with interference cancellation from the first stage. The proposed algorithm is investigated at various modulation techniques with different number of antennas. It is also compared with widely used algorithms in this field. Simulation results demonstrate the efficacy of the proposed algorithm for both uncoded and coded cases.

Publisher URL: http://arxiv.org/abs/1801.04973

DOI: arXiv:1801.04973v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.