A Finite Block Length Achievability Bound for Low Probability of Detection Communication.
Low probability of detection (or covert) communication refers to the scenario where information must be sent reliably to a receiver, but with low probability of detection by an adversary. Recent works on the fundamental limits of this communication problem have established achievability and converse bounds that are asymptotic in the block length of the code. This paper uses Gallager's random coding bound to derive a new achievability bound that is applicable to low probability of detection communication in the finite block length regime. Further insights are unveiled that are otherwise hidden in previous asymptotic analyses.
Publisher URL: http://arxiv.org/abs/1801.05071
DOI: arXiv:1801.05071v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.