3 years ago

Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance

Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance
Shujun Zhang, Jing-Feng Li, Jing Gao, Qing Liu, Lei Zhao
Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La-doped Pb(Zr,Ti)O3-based ceramics, lead-free alternatives are highly desired due to the environmental concerns, and AgNbO3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm−3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20–120 °C, can be achieved in Ta-modified AgNbO3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B-site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected-area electron diffraction measurements. Additionally, Ta addition in AgNbO3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm−1 versus 175 kV cm−1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density. AgNbO3 lead-free antiferroelectric ceramic is reported to be a promising candidate for energy storage applications. A great breakthrough with high recoverable energy density up to 4.2 J cm−3 and good thermal stability with minimal variation (±5%) over a temperature range of 20–120 °C is achieved in Ta-modified AgNbO3 ceramics. This is possible because of the enhanced dielectric breakdown strength and antiferroelectricity.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201701824

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.