3 years ago

Unsupervised Representation Learning with Laplacian Pyramid Auto-encoders.

Zongmin Li, Qilu Zhao

Scale-space representation has been popular in computer vision community due to its theoretical foundation. The motivation for generating a scale-space representation of a given data set originates from the basic observation that real-world objects are composed of different structures at different scales. Hence, it's reasonable to consider learning features with image pyramids generated by smoothing and down-sampling operations. In this paper we propose Laplacian pyramid auto-encoders, a straightforward modification of the deep convolutional auto-encoder architecture, for unsupervised representation learning. The method uses multiple encoding-decoding sub-networks within a Laplacian pyramid framework to reconstruct the original image and the low pass filtered images. The last layer of each encoding sub-network also connects to an encoding layer of the sub-network in the next level, which aims to reverse the process of Laplacian pyramid generation. Experimental results showed that Laplacian pyramid benefited the classification and reconstruction performance of deep auto-encoder approaches, and batch normalization is critical to get deep auto-encoders approaches to begin learning.

Publisher URL: http://arxiv.org/abs/1801.05278

DOI: arXiv:1801.05278v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.