3 years ago

Autonomous Driving in Reality with Reinforcement Learning and Image Translation.

Nayun Xu, Bowen Tan, Bingyu Kong

Supervised learning is widely used in training autonomous driving vehicle. However, it is trained with large amount of supervised labeled data. Reinforcement learning can be trained without abundant labeled data, but we cannot train it in reality because it would involve many unpredictable accidents. Nevertheless, training an agent with good performance in virtual environment is relatively much easier. Because of the huge difference between virtual and real, how to fill the gap between virtual and real is challenging. In this paper, we proposed a novel framework of reinforcement learning with image semantic segmentation network to make the whole model adaptable to reality. The agent is trained in TORCS, a car racing simulator.

Publisher URL: http://arxiv.org/abs/1801.05299

DOI: arXiv:1801.05299v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.