3 years ago

Modulated magnetic structure in 57Fe doped orthorhombic YbMnO3: a M\"ossbauer study.

Pierre Bonville, Felix Balima, Claudia Decorse, Alain Wattiaux, Mathieu Duttine, Hicham Moutaabbid

In the orthorhombic manganites o-RMnO3, where R is a heavy rare earth (R = Gd-Yb), the Mn3+ sublattice is known to undergo two magnetic transitions. The low temperature phase has an antiferromagnetic structure (collinear or elliptical), which has been well characterized by neutron diffraction in most of these compounds. The intermediate phase, occurring in a narrow temperature range (a few K), is documented for R = Gd-Ho as a collinear modulated structure, incommensurate with the lattice spacings. We report here on a 57Fe M\"ossbauer study of 2% 57Fe doped o-YbMnO3, where the spin only Fe3+ ion plays the role of a magnetic probe. From the analysis of the shape of the magnetic hyperfine M\"ossbauer spectra, we show that the magnetic structure of the intermediate phase in o-YbMnO3 (38.0 K < T < 41.5 K) is also modulated and incommensurate.

Publisher URL: http://arxiv.org/abs/1801.05276

DOI: arXiv:1801.05276v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.