4 years ago

Improving a genetically encoded voltage indicator by modifying the cytoplasmic charge composition

Ryuichi Nakajima, Tristan Geiller, Sungmoo Lee, Bradley J. Baker, Yoon-Kyu Song, Arong Jung
An improved genetically encoded voltage indicator (GEVI) was achieved by altering the charge composition of the region linking the voltage-sensing domain of the GEVI to a pH-sensitive fluorescent protein. Negatively charged linker segments reduced the voltage-dependent optical signal while positively charged linkers increased the signal size. Arginine scanning mutagenesis of the linker region improved the signal size of the GEVI, Bongwoori, yielding fluorescent signals as high as 20% ΔF/F during the firing of action potentials. The speed of this new sensor was also capable of optically resolving action potentials firing at 65 Hz. This large signal size enabled individual pixels to become surrogate electrodes. Plotting the highest correlated pixels based only on fluorescence changes reproduced the image of the neuron exhibiting activity. Furthermore, the use of a pH-sensitive fluorescent protein facilitated the detection of the acidification of the neuron during the firing of action potentials.

Publisher URL: https://www.nature.com/articles/s41598-017-08731-2

DOI: 10.1038/s41598-017-08731-2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.