3 years ago

How Criticality of Gene Regulatory Networks Affects the Resulting Morphogenesis under Genetic Perturbations.

Hyobin Kim, Hiroki Sayama

Whereas the relationship between criticality of gene regulatory networks (GRNs) and dynamics of GRNs at a single cell level has been vigorously studied, the relationship between the criticality of GRNs and system properties at a higher level has remained unexplored. Here we aim at revealing a potential role of criticality of GRNs at a multicellular level which are hard to uncover through the single-cell-level studies, especially from an evolutionary viewpoint. Our model simulated the growth of a cell population from a single seed cell. All the cells were assumed to have identical GRNs. We induced genetic perturbations to the GRN of the seed cell by adding, deleting, or switching a regulatory link between a pair of genes. From numerical simulations, we found that the criticality of GRNs facilitated the formation of nontrivial morphologies when the GRNs were critical in the presence of the evolutionary perturbations. Moreover, the criticality of GRNs produced topologically homogenous cell clusters by adjusting the spatial arrangements of cells, which led to the formation of nontrivial morphogenetic patterns. Our findings corresponded to an epigenetic viewpoint that heterogeneous and complex features emerge from homogeneous and less complex components through the interactions among them. Thus, our results imply that highly structured tissues or organs in morphogenesis of multicellular organisms might stem from the criticality of GRNs.

Publisher URL: http://arxiv.org/abs/1801.04919

DOI: arXiv:1801.04919v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.