Symmetric wetting heterogeneity suppresses fluid displacement hysteresis in granular piles.
We investigate experimentally the impact of heterogeneity on the capillary pressure hysteresis in fluid invasion of model porous media. We focus on `symmetric' heterogeneity, where the contact angles the fluid interface makes with the oil-wet ($\theta_1$) and the water-wet ($\theta_2$) beads add up to $\pi$. While enhanced heterogeneity is usually known to increase hysteresis phenomena, we find that hysteresis is greatly reduced when heterogeneities in wettability are introduced. On the contrary, geometric heterogeneity (like bi-disperse particle size) does not lead to such effect. We provide a qualitative explanation of this surprising result, resting on rather general geometric arguments.
Publisher URL: http://arxiv.org/abs/1801.04990
DOI: arXiv:1801.04990v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.