3 years ago

Universal linear optical operations on discrete phase-coherent spatial modes.

Peng Zhao, Yidong Huang, Xue Feng, Wei Zhang, Kaiyu Cui, Shikang Li, Fang Liu, Stephen M. Barnett

Linear optical operations are fundamental and significant for both quantum mechanics and classical technologies. We demonstrate a non-cascaded approach to perform arbitrary unitary and non-unitary linear operations for N-dimensional phase-coherent spatial modes with meticulously designed phase gratings. As implemented on spatial light modulators (SLMs), the unitary transformation matrix has been realized with dimensionalities ranging from 7 to 24 and the corresponding fidelities are from 95.1% to 82.1%. For the non-unitary operators, a matrix is presented for the tomography of a 4-level quantum system with a fidelity of 94.9%. Thus, the linear operator has been successfully implemented with much higher dimensionality than that in previous reports. It should be mentioned that our method is not limited to SLMs and can be easily applied on other devices. Thus we believe that our proposal provides another option to perform linear operation with a simple, fixed, error-tolerant and scalable scheme.

Publisher URL: http://arxiv.org/abs/1801.05092

DOI: arXiv:1801.05092v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.